1,698 research outputs found

    Galaxy filaments as pearl necklaces

    Full text link
    Context. Galaxies in the Universe form chains (filaments) that connect groups and clusters of galaxies. The filamentary network includes nearly half of the galaxies and is visually the most striking feature in cosmological maps. Aims. We study the distribution of galaxies along the filamentary network, trying to find specific patterns and regularities. Methods. Galaxy filaments are defined by the Bisous model, a marked point process with interactions. We use the two-point correlation function and the Rayleigh Z-squared statistic to study how galaxies and galaxy groups are distributed along the filaments. Results. We show that galaxies and groups are not uniformly distributed along filaments, but tend to form a regular pattern. The characteristic length of the pattern is around 7 Mpc/h. A slightly smaller characteristic length 4 Mpc/h can also be found, using the Z-squared statistic. Conclusions. We find that galaxy filaments in the Universe are like pearl necklaces, where the pearls are galaxy groups distributed more or less regularly along the filaments. We propose that this well defined characteristic scale could be used to test various cosmological models and to probe environmental effects on the formation and evolution of galaxies.Comment: 8 pages, 9 figures, 1 table, accepted for publication in A&

    Searching for Planets in the Hyades II: Some Implications of Stellar Magnetic Activity

    Full text link
    The Hyades constitute a homogeneous sample of stars ideal for investigating the dependence of planet formation on the mass of the central star. Due to their youth, Hyades members are much more chromospherically active than stars traditionally surveyed for planets using high precision radial velocity (RV) techniques. Therefore, we have conducted a detailed investigation of whether magnetic activity of our Hyades target stars will interfere with our ability to make precise RV searches for substellar companions. We measure chromospheric activity (which we take as a proxy for magnetic activity) by computing the equivalent of the R'HK activity index from the Ca II K line. is not constant in the Hyades: we confirm that it decreases with increasing temperature in the F stars, and also find it decreases for stars cooler than mid-K. We examine correlations between simultaneously measured R'HK and RV using both a classical statistical test and a Bayesian odds ratio test. We find that there is a significant correlation between R'HK and the RV in only 5 of the 82 stars in this sample. Thus, simple Rprime HK-RV correlations will generally not be effective in correcting the measured RV values for the effects of magnetic activity in the Hyades. We argue that this implies long timescale activity variations (of order a few years; i.e., magnetic cycles or growth and decay of plage regions) will not significantly hinder our search for planets in the Hyades if the stars are closely monitored for chromospheric activity. The trends in the RV scatter (sigma'_v) with , vsini, and P_rot for our stars is generally consistent with those found in field stars in the Lick planet search data, with the notable exception of a shallower dependence of sigma'_v on for F stars.Comment: 15 pages, 7 figures, 3 tables; To appear in the July 2002 issue of The Astronomical Journa

    Alignment of galaxies relative to their local environment in SDSS-DR8

    Full text link
    We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of < 11 member groups; the alignment increases with environmental density and luminosity. We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.Comment: 15 pages, 15 figures, accepted for publication in A&

    Planet-Induced Emission Enhancements in HD 179949: Results from McDonald Observations

    Full text link
    We monitored the Ca II H and K lines of HD 179949, a notable star in the southern hemisphere, to observe and confirm previously identified planet induced emission (PIE) as an effect of star-planet interaction. We obtained high resolution spectra (R ~ 53,000) with a signal-to-noise ratio S/N >~ 50 in the Ca II H and K cores during 10 nights of observation at the McDonald Observatory. Wide band echelle spectra were taken using the 2.7 m telescope. Detailed statistical analysis of Ca II K revealed fluctuations in the Ca II K core attributable to planet induced chromospheric emission. This result is consistent with previous studies by Shkolnik et al. (2003). Additionally, we were able to confirm the reality and temporal evolution of the phase shift of the maximum of star-planet interaction previously found. However, no identifiable fluctuations were detected in the Ca II H core. The Al I lambda 3944 A line was also monitored to gauge if the expected activity enhancements are confined to the chromospheric layer. Our observations revealed some variability, which is apparently unassociated with planet induced activity.Comment: 11 pages, 11 figures, 5 tables; Publications of the Astronomical Society of Australia (in press

    Search for exoplanets with the radial-velocity technique: quantitative diagnostics of stellar activity

    Full text link
    Aims: Stellar activity may complicate the analysis of high-precision radial-velocity spectroscopic data when looking for exoplanets signatures. We aim at quantifying the impact of stellar spots on stars with various spectral types and rotational velocities and comparing the simulations with data obtained with the HARPS spectrograph. Methods: We have developed detailed simulations of stellar spots and estimated their effects on a number of observables commonly used in the analysis of radial-velocity data when looking for extrasolar planets, such as radial-velocity curves, cross-correlation functions, bisector spans and photometric curves. The computed stellar spectra are then analyzed in the same way as when searching for exoplanets. Results: 1) A first grid of simulation results is built for F-K type stars, with different stellar and spot properties. 2) It is shown quantitatively that star spots with typical sizes of 1% can mimic both radial-velocity curves and the bisector behavior of short-period giant planets around G-K type stars with a vsini lower than the spectrograph resolution. For stars with intermediate vsini, smaller spots may produce similar features. In these cases, additional observables (e.g., photometry, spectroscopic diagnostics) are mandatory to confirm the presence of short-period planets. We show that, in some cases, photometric variations may not be enough to clearly rule out spots as explanations of the observed radial-velocity variations. This is particularly important when searching for super-Earth planets. 3) It is also stressed that quantitative values obtained for radial-velocity and bisector span amplitudes depend strongly on the detailed star properties, on the spectrograph used, on the set of lines used, and on the way they are measured.Comment: 12 pages, 16 figures, accepted for publication in A&
    corecore